
PROCEEDINGS Open Access

BayesHammer: Bayesian clustering for error
correction in single-cell sequencing
Sergey I Nikolenko1*, Anton I Korobeynikov1,2, Max A Alekseyev1,3

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Abstract
Error correction of sequenced reads remains a difficult task, especially in single-cell sequencing projects with
extremely non-uniform coverage. While existing error correction tools designed for standard (multi-cell) sequencing
data usually come up short in single-cell sequencing projects, algorithms actually used for single-cell error
correction have been so far very simplistic.
We introduce several novel algorithms based on Hamming graphs and Bayesian subclustering in our new error
correction tool BAYESHAMMER. While BAYESHAMMER was designed for single-cell sequencing, we demonstrate
that it also improves on existing error correction tools for multi-cell sequencing data while working much faster on
real-life datasets. We benchmark BAYESHAMMER on both k-mer counts and actual assembly results with the
SPADES genome assembler.

Background
Single-cell sequencing [1,2] based on the Multiple Displa-
cement Amplification (MDA) technology [1,3] allows one
to sequence genomes of important uncultivated bacteria
that until recently had been viewed as unamenable to
genome sequencing. Existing metagenomic approaches
(aimed at genes rather than genomes) are clearly limited
for studies of such bacteria despite the fact that they
represent the majority of species in such important stu-
dies as the Human Microbiome Project [4,5] or discovery
of new antibiotics-producing bacteria [6].
Single-cell sequencing datasets have extremely non-

uniform coverage that may vary from ones to thousands
along a single genome (Figure 1). For many existing error
correction tools, most notably QUAKE [7], uniform cov-
erage is a prerequisite: in the case of non-uniform cover-
age they either do not work or produce poor results.
Error correction tools usually attempt to correct the set

of k-character substrings of reads called k-mers and then
propagate corrections to whole reads which are important
to have for many assemblers. Error correction tools often
employ a simple idea of discarding rare k-mers, which

obviously does not work in the case of non-uniform
coverage.
Medvedev et al. [8] recently presented a new approach

to error correction for datasets with non-uniform cover-
age. Their algorithm HAMMER makes use of the Ham-
ming graph (hence the name) on k-mers (vertices of the
graph correspond to k-mers and edges connect pairs of
k-mers with Hamming distance not exceeding a certain
threshold). HAMMER employs a simple and fast cluster-
ing technique based on selecting a central k-mer in each
connected component of the Hamming graph. Such cen-
tral k-mers are assumed to be error-free (i.e., they are
assumed to actually appear in the genome), while the
other k-mers from connected components are assumed to
be erroneous instances of the corresponding central
k-mers. However, HAMMER may be overly simplistic: in
connected components of large diameter or connected
components with several k-mers of large multiplicities, it
is more reasonable to assume that there are two or more
central k-mers (rather than one as in HAMMER). Biologi-
cally, such connected components may correspond to
either (1) repeated regions with similar but not identical
genomic sequences (repeats) which would be bundled
together by existing error correction tools (including
HAMMER); or (2) artificially united k-mers from distinct

* Correspondence: sergey@logic.pdmi.ras.ru
1Algorithmic Biology Laboratory, Academic University, St. Petersburg, Russia
Full list of author information is available at the end of the article

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

© 2013 Nikolenko et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

parts of the genome that just happen to be connected by a
path in the Hamming graph (characteristic to HAMMER).
In this paper, we introduce the BAYESHAMMER error

correction tool that does not rely on uniform coverage.
BAYESHAMMER uses the clustering algorithm of HAM-
MER as a first step and then refines the constructed clus-
ters by further subclustering them with a procedure that
takes into account reads quality values (e.g., provided by
Illumina sequencing machines) and introduces Bayesian
(BIC) penalties for extra subclustering parameters.
BAYESHAMMER subclustering aims to capture the
complex structure of repeats (possibly of varying cover-
age) in the genome by separating even very similar
k-mers that come from different instances of a repeat.
BAYESHAMMER also uses a new approach for propa-
gating corrections in k-mers to corrections in the reads.
All algorithms in BAYESHAMMER are heavily paralle-
lized whenever possible; as a result, BAYESHAMMER
gains a significant speedup with more processing cores
available. These features make BAYESHAMMER a per-
fect error correction tool for single-cell sequencing.
We remark that HAMMER produces only a set of cen-

tral k-mers but does not correct reads, making it incompa-
tible with most genome assemblers. QUAKE does correct
reads but has severe memory limitations for large k and
assumes uniform coverage. In contrast, EULER-SR [9] and
CAMEL [2] correct reads and do not make strong
assumptions on coverage (both tools have been used for
single-cell assembly projects [2]) which makes these tools
suitable for comparison to BAYESHAMMER. Our bench-
marks show that BAYESHAMMER outperforms these
tools in both single-cell and standard (multi-cell) modes.
We further couple BAYESHAMMER with a recently
developed genome assembler SPADES [10] and demon-
strate that assembly of BAYESHAMMER-corrected reads
significantly improves upon assembly with reads corrected
by other tools for the same datasets, while the total run-
ning time also improves significantly.
BAYESHAMMER is freely available for download as

part of the SPADES genome assembler at http://bioinf.
spbau.ru/spades/.

Methods
Notation and outline
Let ∑ = {A, C, G, T} be the alphabet of nucleotides
(BAYESHAMMER discards k-mers with uncertain bases
denoted N). A k-mer is an element of ∑k, i.e., a string of k
nucleotides. We denote the ith letter (nucleotide) of a
k-mer x by x[i], indexing them from zero: 0 ≤ i ≤ k - 1. A
subsequence of x corresponding to a set of indices I is
denoted by x[I]. We use interval notation [i, j] for inter-
vals of integers {i, i + 1,..., j} and further abbreviate x[i, j]
= x [{i, i + 1,..., j}]; thus, x = x[0, k - 1]. Input reads are
represented as a set of strings R ⊂ Σ* along with their
quality values (qr[i])

|r|−1
i=0 for each r Î R. We assume that

qr[i] estimates the probability that there has been an
error in position i of read r. Notice that in practice, the
fastq file format [11] contains characters that encode
probabilities on a logarithmic scale (in particular, pro-
ducts of probabilities used below correspond to sums of
actual quality values).
Below we give an overview of BAYESHAMMER work-

flow (Figure 2) and refer to subsequent sections for further
details. On Step (1), k-mers in the reads are counted, pro-
ducing a triple statistics(x) = (countx, qualityx, errorx) for
each k-mer x. Here, countx is the number of times x
appears as a substring in the reads, qualityx is its total qual-
ity expressed as a probability of sequencing error in x, and
errorx is a k-dimensional vector that contains products of
error probabilities (sums of quality values) for individual
nucleotides of x across all its occurrences in the reads. On
Step (2), we find connected components of the Hamming
graph constructed from this set of k-mers. On Step (3), the
connected components become subject to Bayesian sub-
clustering; as a result, for each k-mer we know the center
of its subcluster. On Step (4), we filter subcluster centers
according to their total quality and form a set of solid
k-mers which is then iteratively expanded on Step (5) by
mapping them back to the reads. Step (6) deals with reads
correction by counting the majority vote of solid k-mers in
each read. In the iterative version, if there has been a sub-
stantial amount of changes in the reads, we run the next
iteration of error correction; otherwise, output the

Figure 1 Logarithmic coverage plot for the single-cell E. coli dataset. Logarithmic coverage plot for the single-cell E. coli dataset (similar plot
is also given in [2]).

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 2 of 11

corrected reads. Below we describe specific algorithms
employed in the BAYESHAMMER pipeline.

Algorithms
Step (1): computing k-mer statistics
To collect k-mer statistics, we use a straightforward hash
map approach [12] that does not require storing instances
of all k-mers in memory (as excessive amount of RAM
might be needed otherwise). For a certain positive integer
N (the number of auxiliary files), we use a hash function

h: ∑k ®ℤN that maps k-mers over the alphabet Σ to inte-
gers from 0 to N - 1.
Algorithm 1 Count k-mers

for each k-mer x from the reads R: do
compute h(x) and write x to Fileh(x).

for i Î [0, N - 1]: do
sort Filei with respect to the lexicographic order;
reading Filei sequentially, compute statistics(s)
for each k-mer s from Filei.

Figure 2 BAYESHAMMER workflow.

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 3 of 11

Step (2): constructing connected components of Hamming
graph
Step (2) is the essence of the HAMMER approach [8].
The Hamming distance between k-mers x, y Î ∑k is the
number of nucleotides in which they differ:

d(x, y) =
∣∣{i ∈ [0, k − 1] : x[i] ̸= y[i]}

∣∣ .

For a set of k-mers X, the Hamming graph HGτ(X) is an
undirected graph with the set of vertices X and edges cor-
responding to pairs of k-mers from X with Hamming dis-
tance at most τ, i.e., x, y Î X are connected by an edge in
HGτ(X) iff d(x, y) ≤ τ (Figure 3). To construct HGτ(X) effi-
ciently, we notice that if two k-mers are at Hamming dis-
tance at most τ, and we partition the set of indices [0,k - 1]
into τ + 1 parts, then at least one part corresponds to the
same subsequence in both k-mers. Below we assume with
little loss of generality that τ + 1 divides k, i.e., k = s (τ + 1)
for some integer s.
For a subset of indices I ⊆ [0, k - 1], we define a partial

lexicographic ordering ≺I as follows: x ≺I y iff x[I] ≺ y[I],
where ≺ is the lexicographic ordering on Σ*. Similarly, we
define a partial equality =I such that x =I y iff x[I] = y[I].
We partition the set of indices [0, k - 1] into τ + 1 parts of
size s and for each part I, sort a separate copy of X with
respect to ≺I. As noticed above, for every two k-mers x,
y Î X with d(x, y) ≤ τ, there exists a part I such that x =I y.
It therefore suffices to separately consider blocks of
equivalent k-mers with respect to =I for each part I. If a
block is small (i.e., of size smaller than a certain threshold),
we go over the pairs of k-mers in this block to find those
with Hamming distance at most τ. If a block is large, we
recursively apply to it the same procedure with a different
partition of the indices. In practice, we use two different
partitions of [0, k - 1]: the first corresponds to contigious
subsets of indices (recall that σ = k

τ+1):

Algorithm 2 Hamming graph processing

procedure HGPROCESS(X, max_quadratic)
Init components with singletons X = {{x} : x ∈ X} .
for all ϒ Î FindBlocks (X, {Icnt

s }τs=0) do
if |ϒ| > max_quadratic then
for all Z Î FindBlocks (ϒ , {Istr

s }τs=0) do
ProcessExhaustively (Z,X)

else
ProcessExhaustively (ϒ ,X) .

function FindBlocks (X, {Is}τs=0)
for s = 0,...,τ do

sort a copy of X with respect to ≺Is , getting
Xs.

for s = 0,...,τ do
output the set of equiv. blocks {ϒ} w.r.t.=Is .

procedure PROCESSEXHAUSTIVELY (ϒ ,X)
for each pair x, y Î ϒ do

if d(x, y) ≤ τ then join their sets in X :
for all x ∈ Zx ∈ X , y ∈ Zy ∈ X do

X := X ∪ {Zx ∪ Zy}\{Zx, Zy} .

Icnt
s = {sσ , sσ + 1, . . . , sσ + σ − 1}, s = 0, . . . , τ ,

while the second corresponds to strided subsets of
indices:

Istr
s = {s, s + τ + 1, s + 2(τ + 1), . . . , s + (σ − 1)(τ + 1)}, s = 0, . . . , τ .

BAYESHAMMER uses a two-step procedure, first
splitting with respect to {Icnt

s }τs=0 (Figure 4) and then, if

an equivalence block is large, with respect to {Istr
s }τs=0 .

On the block processing step, we use the disjoint set
data structure [12] to maintain the set of connected
components. Step (2) is summarized in Algorithm 2.

Figure 3 Hamming graphs HG1(X) and HG2(X). Hamming graphs HG1(X) and HG2(X) for X being the set of 4-mers {ACGTG, CGTGT, GTGTG,
ACATG, CATGT, ATGTG, ACCTG, CCTGT, CTGTC} of the reads ACGTGTG, ACATGTG, ACCTGTC. Blue edges denote Hamming distance 2.

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 4 of 11

Step (3): Bayesian subclustering
In HAMMER’s generative model [8], it is assumed that
errors in each position of a k-mer are independent and
occur with the same probability ε, which is a fixed glo-
bal parameter (HAMMER used ε = 0.01). Thus, the like-
lihood that a k-mer x was generated from a k-mer y
under HAMMER’s model equals

LHAMMER(x|y) = (1 − ε)k−d(x,y)εd(x,y).

Under this model, the maximum likelihood center of a
cluster is simply its consensus string [8].
In BAYESHAMMER, we further elaborate upon HAM-

MER’s model. Instead of a fixed ε, we use reads quality
values that approximate probabilities qx[i] of a nucleotide
at position i in the k-mer x being erroneous. We combine
quality values from identical k-mers in the reads: for a
multiset of k-mers X that agree on the jth nucleotide, it is
erroneous with probability ΠxÎX qx[j].
The likelihood that a k-mer x has been generated from

another k-mer c (under the independent errors assump-
tion) is given by

L(x|c) =
∏

j:x[j]̸=c[j]

qx[j]
∏

j:x[j]=c[j]

(1 − qx[j]),

and the likelihood of a specific subclustering C = C1

∪... ∪ Cm is

Lm(C1, . . . , Cm) =
m∏

i=1

∏

x∈Ci

L(x|ci)

where ci is the center (consensus string) of the sub-
cluster Ci.
In the subclustering procedure (see Algorithm 3), we

sequentially subcluster each connected component of the
Hamming graph into more and more clusters with the
classical k-means clustering algorithm (denoted m-means
since k has different meaning). For the objective function,
we use the likelihood as above penalized for overfitting

with the Bayesian information criterion (BIC) [13]. In this
case, there are |C| observations in the dataset, and the
total number of parameters is 3 km + m - 1:

• m - 1 for probabilities of subclusters,
• km for cluster centers, and
• 2 km for error probabilities in each letter: there are 3
possible errors for each letter, and the probabilities
should sum up to one. Here error probabilities are con-
ditioned on the fact that an error has occurred (alterna-
tively, we could consider the entire distribution,
including the correct letter, and get 3 km parameters
for probabilities but then there would be no need
to specify cluster centers, so the total number is the
same).

Algorithm 3 Bayesian subclustering

for all connected components C of the Hamming
graph do

m := 1
ℓ1 := 2 log L1(C) (likelihood of the cluster gener-
ated by the consensus)
repeat

m := m + 1
do m-means clustering of C = C1 ∪...∪ Cm w.
r.t. the Hamming distance; the initial approx-
imation to the centers is given by k-mers that
have the least error probability
ℓm := 2 · log Lm(C1,...,Cm) (3 km + m - 1) ·
log |C|

until ℓm ≤ ℓm-1

output the best found clustering C = C1 ∪...∪ Cm-1

Therefore, the resulting objective function is

ℓm := 2 · log Lm(C1, . . . , Cm) − (3km + m − 1) · log |C|

for subclustering into m clusters; we stop as soon as
ℓm ceases to increase.

Figure 4 Partial lexicographic orderings. Partial lexicographic orderings of a set X of 9-mers with respect to the index sets Icnt
0 = {0, 1, 2} ,

Icnt
1 = {3, 4, 5} , and Icnt

2 = {6, 7, 8} . Red dotted lines indicate equivalence blocks.

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 5 of 11

Steps (4) and (5): selecting solid k-mers and expanding the
set of solid k-mers
We define the quality of a k-mer x as the probability

that it is error-free: px =
∏k−1

j=0
(1 − qx[j]) . The k-mer

qualities are computed on Step (1) along with comput-
ing k-mer statistics. Next, we (generously) define the
quality of a cluster C as the probability that at least one
k-mer in C is correct:

pC = 1 −
∏

x∈C

(1 − px).

In contrast to HAMMER, we do not distinguish
whether the cluster is a singleton (i.e., |C| = 1); there
may be plenty of superfluous clusters with several
k-mers obtained by chance (actually, it is more likely to
obtain a cluster of several k-mers by chance than a sin-
gleton of the same total multiplicity).
Initially we mark as solid the centers of the clusters

whose total quality exceeds a predefined threshold (a glo-
bal parameter for BAYESHAMMER, set to be rather
strict). Then we expand the set of solid k-mers iteratively:
if a read is completely covered by solid k-mers we con-
clude that it actually comes from the genome and mark
all other k-mers in this read as solid, too (Algorithm 4).
Step (6): reads correction
After Steps (1)-(5), we have constructed the set of solid
k-mers that are presumably error-free. To construct cor-
rected reads from the set of solid k-mers, for each base
of every read, we compute the consensus of all solid

k-mers and solid centers of clusters of all non-solid
k-mers covering this base (Figure 5). This step is for-
mally described as Algorithm 5.
Algorithm 4 Solid k-mers expansion

procedure ITERATIVEEXPANSION(R, X)
while ExpansionStep(R, X) do

function EXPANSIONSTEP(R, X)
for all reads r Î R do

if r is completely covered by solid k-mers
then
mark all k-mers in r as solid

Return TRUE if X has increased and FALSE
otherwise.

Algorithm 5 Reads correction
Input: reads R, solid k-mers X, clusters C .

for all reads r Î R do
init consensus array υ: [0, |r| - 1] × {A, C, G, T} ®
N with zeros: υ(j, x[i]):= 0 for all i = 0,...,|r| - 1 and
j = 0,...,k - 1
for i = 0,...,|r| - k do

if r[i, i + k - 1] Î X (it is solid) then
for j Î [i, i + k - 1] do
υ(j, r[i]):= υ(j, r[i]) + 1

if r[i, i + k - 1] Î C for some C Î C then
let x be the center of C
if x Î X (r belongs to a cluster with solid

center) then
for j Î [i, i + k - 1] do

Figure 5 Read correction. Reads correction. Grey k-mers indicate non-solid k-mers. Red k-mers are the centers of the corresponding clusters
(two grey k-mers striked through on the right are non-solid singletons). As a result, one nucleotide is changed.

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 6 of 11

υ(j, x[i]):= υ(j, x[i]) + 1
for i Î [0, |r| - 1] do

r[i]:= arg maxaÎΣ υ(i, a).

Results and discussion
Datasets
In our experiments, we used three datasets from [2]: a
single-cell E. coli, a single-cell S. aureus, and a standard
(multicell) E. coli dataset. Paired-end libraries were gen-
erated by an Illumina Genome Analyzer IIx from MDA-
amplified single-cell DNA and from multicell genomic
DNA prepared from cultured E. coli, respectively These
datasets consist of 100 bp paired-end reads with insert
size 220; both E. coli datasets have average coverage ≈
600×, although the coverage is highly non-uniform in
the single-cell case.
In all experiments, BAYESHAMMER used k = 21 (we

observed no improvements for higher values of k).

k-mer counts
Table 1 shows error correction statistics produced by
di erent tools on all three datasets. For a comparison
with HAMMER, we have emulated HAMMER with
read correction by turning off Bayesian subclustering

(HammerExpanded in the table) and both Bayesian
subclustering and read expansion, another new idea of
BAYESHAMMER (HammerNoExpansion in the table).
Note that despite its more complex processing, BAYE-
SHAMMER is significantly faster than other error correc-
tion tools (except, of course, for HAMMER which is
a strict subset of BAYESHAMMER processing in our
experiments and is run on BAYESHAMMER code).
BAYESHAMMER also produces, in the single-cell case, a
much smaller set of k-mers in the resulting reads which
leads to smaller de Bruijn graphs and thus reduces the
total assembly running time. Since BAYESHAMMER
trims only bad quality bases and does not, like QUAKE,
trim bases that it has not been able to correct (it has been
proven detrimental for single-cell assembly in our experi-
ments), it does produce a much larger set of k-mers than
Quake on a multi-cell dataset.
For a comparison of BAYESHAMMER with other tools

in terms of error rate reduction across an average read,
see the logarithmic error rate graphs on Figure 6. Note
that we are able to count errors only for the reads that
actually aligned to the genome, so the graphs are biased in
this way. Note how the first 21 bases are corrected better
than others in BAYESHAMMER and both versions of

Table 1 k-mer statistics.
Correction tool Running

time
k-mers Reads

Total Genomic Non-
genomic

% of all genomic k-mers
found in reads

% genomic among all
k-mers in reads

% reads aligned
to genome

Multi-cell E. coli, total 4,543,849 genomic k-mers

Uncorrected 187,580,875 4,543,684 183,037,191 99.99 2.4 99.05

Quake 4,565,237 4,543,461 21,776 99.99 99.5 99.97

HammerNoExpansion 30 m 58,305,738 4,543,674 53,762,064 99.99 8.4 95.59

HammerExpanded 36 m 28,290,788 4,543,673 23,747,115 99.99 19.1 99.49

BayesHammer 37 m 27,100,305 4,543,674 22,556,631 99.99 20.1 99.62

Single-cell E. coli, total 4,543,849 genomic k-mers

Uncorrected 165,355,467 4,450,489 160,904,978 97.9 2.7 79.05

Camel 2 h 29 m 147,297,070 4,450,311 142,846,759 97.9 3.0 81.25

Euler-SR 2 h 15 m 138,677,818 4,450,431 134,227,387 97.9 3.2 81.95

Coral 2 h 47 m 156,907,496 4,449,560 152,457,936 97.9 2.8 80.28

HammerNoExpansion 37 m 53,001,778 4,443,538 48,558,240 97.8 8.3 81.36

HammerExpanded 43 m 36,471,268 4,443,545 32,027,723 97.8 12.1 86.91

BayesHammer 57 m 35,862,329 4,443,736 31,418,593 97.8 12.4 87.12

Single-cell S. aureus, total 2,821,095 genomic k-mers

Uncorrected 88,331,311 2,820,394 85,510,917 99.98 3.2 75.07

Camel 5 h 13 m 69,365,311 2,820,350 66,544,961 99.97 4.1 75.27

Euler-SR 2 h 33 m 58,886,372 2,820,349 56,066,023 99.97 4.8 75.24

Coral 7 h 12 m 83,249,146 2,820,011 80,429,135 99.96 3.4 75.22

HammerNoExpansion 58 m 37,465,296 2,820,341 34,644,955 99.97 7.5 71.63

HammerExpanded 1 h 03 m 23,197,521 2,820,316 20,377,205 99.97 12.1 76.54

BayesHammer 1 h 09 m 22,457,509 2,820,311 19,637,198 99.97 12.6 76.60

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 7 of 11

HAMMER since we have run it with k = 21; still, other
values of k did not show a significant improvement in
either k-mer statistics or, more importantly, assembly
results.

Assembly results
Tables 2 and 3 shows assembly results by the recently
developed SPAdes assembler [10]; SPAdes was designed
specifically for single-cell assembly, but has by now demon-
strated state-of-the-art results on multi-cell datasets as well.

In the tables, N50 is such length that contigs of that
length or longer comprise ≥ 1

2 of the assembly; NG50 is
a metric similar to N50 but only taking into account
contigs comprising (and aligning to) the reference gen-
ome; NA50 is a metric similar to N50 after breaking up
misassembled contigs by their misassemblies. NGx and
NAx metrics have a more direct relevance to assembly
quality than regular Nx metrics; our result tables have
been produced by the recently developed tool QUAST
[14].

Figure 6 Error reduction. Error reduction by read position on logarithmic scale for the single-cell E. coli, single-cell S. aureus, and multi-cell E.
coli datasets.

Table 2 Assembly results, single-cell E.coli and S. aureus datasets (contigs of length ≥ 200 are used).
Statistics BayesHammer BayesHammer

(scaff old)
Coral Coral

(scaff
old)

EulerSR EulerSR
(scaff
old)

Hammer,
expanded

Hammer,
no
expansion

Hammer, no
expansion(scaff
old)

Hammer
(scaff
old)

Single-cell E. coli, reference length 4639675, reference GC content 50.79%

contigs
(1000 bp)

191 158 276 224 231 150 195 282 242 173

contigs 521 462 675 592 578 375 529 655 592 477

Largest contig 269177 284968 179022 179022 267676 267676 268464 210850 210850 268464

Total length 4952297 4989404 5064570 4817757 4817757 4902434 4977294 5097148 5340871 5005022

N50 110539 113056 45672 67849 74139 95704 97639 65415 84893 109826

NG50 112065 118432 55073 87317 77762 108976 101871 68595 96600 112161

NA50 110539 113056 45672 67765 74139 95704 97639 65415 84841 109826

NGA50 112064 118432 55073 87317 77762 108976 101871 68594 96361 112161

#
misassemblies

4 6 9 12 6 8 4 4 7 7

#
misassembled
contigs

4 6 9 10 6 8 4 4 7 7

Misass. contigs
length

42496 94172 62114 150232 47372 149639 43304 26872 147140 130706

Genome
covered (%)

96.320 96.315 96.623 96.646 95.337 95.231 96.287 96.247 96.228 96.281

GC (%) 49.70 49.69 49.61 49.56 49.90 49.74 49.68 49.64 49.60 49.68

mismatches/
100 kbp

11.22 11.70 8.36 9.10 5.55 5.82 12.77 54.11 52.48 13.08

indels/100
kbp

1.07 8.26 9.17 12.76 0.52 47.80 0.91 1.17 7.96 8.69

genes 4065 + 4079 + 3998 + 4040 + 3992 + 4020 + 4068 + 4034 + 4048 + 4078 +

124 part 110 part 180 part 143 part 140 part 107 part 123 part 152 part 136 part 111 part

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 8 of 11

Table 2 Assembly results, single-cell E.coli and S. aureus datasets (contigs of length ≥ 200 are used). (Continued)

Single-cell S. aureus, reference length 2872769, reference GC content 32.75%

contigs
(1000 bp)

95 85 132 113 82 70 114 272 258 101

Total length
(1000 bp)

3019597 3309342 3055585 3066662 2972925 2993100 3033912 3389846 3405223 3509555

contigs 260 241 455 423 166 134 312 721 711 292

Largest contig 282558 328686 208166 208166 254085 535477 282558 148002 166053 328679

Total length 3081173 3368034 3160497 3166169 3008746 3020256 3111423 3575679 3594468 3584266

N50 87684 145466 62429 90701 101836 145466 74715 30788 34943 131272

NG50 112566 194902 87636 99341 108151 159555 88292 39768 45889 180022

NA50 87684 145466 62429 89365 100509 145466 68711 30788 34552 112801

NGA50 88246 148064 74452 90101 101836 145466 88289 35998 42642 148023

#
misassemblies

15 17 11 14 4 5 11 14 18 14

#
misassembled
contigs

12 14 9 10 4 5 9 14 16 12

Misass. contigs
length

340603 779785 478009 523596 377133 918380 402997 272677 324361 940356

Genome
covered (%)

99.522 99.483 99.449 99.447 99.213 99.254 99.204 98.820 98.888 99.221

GC (%) 32.67 32.63 32.64 32.63 32.66 32.67 32.67 32.39 32.38 32.57

mismatches
per 100 kbp

3.18 8.01 12.44 12.65 9.72 10.28 17.38 54.92 55.50 15.36

indels per
100 kbp

2.17 2.30 15.50 15.67 3.80 4.08 3.57 2.64 2.72 3.04

genes 2540 + 2547 + 2532 + 2540 + 2547 + 2550 + 2535 + 2477 + 2485 + 2539 +

36 part 30 part 45 part 37 part 30 part 27 part 41 part 91 part 85 part 38 part

Table 3 Assembly results, multi-cell E.coli dataset (contigs of length ≥ 200 are used).
Statistics BayesHammer BayesHammer

(sca_old)
Hammer,
expanded

Hammer, no
expansion

Hammer, no
expansion
(sca_old)

Hammer
(sca_old)

Quake

Multi-cell E. coli, 600 coverage, reference length 4639675, reference GC content 50.79%

contigs (≥ 500 bp) 103 102 119 238 213 115 165

contigs (≥ 1000 bp) 91 90 99 192 171 96 156

Total length (≥ 500 bp) 4641845 4641790 4626515 4730338 4817457 4627067 4543682

Total length (≥ 1000 bp) 4633361 4633306 4611745 4696966 4787210 4612838 4537565

contigs 122 121 146 325 303 141 204

Largest contig 285113 285113 218217 210240 210240 218217 165487

Total length 4647325 4647270 4635156 4756088 4844208 4635349 4555015

N50 132645 132645 113608 59167 73113 113608 58777

NG50 132645 132645 113608 59669 80085 113608 57174

NA50 132645 132645 113608 59167 73113 113608 58777

NGA50 132645 132645 113608 59669 80085 113608 57174

misassemblies 3 3 4 4 7 5 0

misassembled contigs 3 3 4 4 7 5 0

Misassembled contigs
length

44466 44466 57908 15259 30901 60418 0

Genome covered (%) 99.440 99.440 99.383 98.891 98.925 99.385 98.747

GC (%) 50.78 50.77 50.77 50.73 50.71 50.77 50.75

N’s (%) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 9 of 11

All assemblies have been done with SPADES. The
results show that after BAYESHAMMER correction,
assembly results improve significantly, especially in the
single-cell E. coli case; it is especially interesting to note
that even in the multi-cell case, where BAYESHAMMER
loses to QUAKE by k-mer statistics, assembly results actu-
ally improve over assemblies produced from QUAKE-cor-
rected reads (including genome coverage and the number
of genes).

Conclusions
Single-cell sequencing presents novel challenges to error
correction tools. In contrast to multi-cell datasets, for
single-cell datasets, there is no pretty distribution of k-
mer multiplicities; one therefore has to work with k-
mers on a one-by-one basis, considering each cluster of
k-mers separately. In this work, we further developed
the ideas of HAMMER from a Bayesian clustering per-
spective and presented a new tool BAYESHAMMER
that makes them practical and yields significant
improvements over existing error correction tools.
There is further work to be done to make our underlying

models closer to real life; for instance, one could learn a
non-uniform distribution of single nucleotide errors and
plug it in our likelihood formulas. Another natural
improvement would be to try and rid the results of con-
tamination by either human or some other DNA material;
we observed significant human DNA contamination in our
single-cell dataset, so weeding it out might yield a signifi-
cant improvement. Finally, a new general approach that we
are going to try in our further work deals with the techni-
que of minimizers introduced by Roberts et al. [15]. It may
provide significant reduction in memory requirements and
a possible approach to dealing with paired information.

Acknowledgements
We thank Pavel Pevzner for many fruitful discussions on all stages of the
project. We are also grateful to Andrei Prjibelski and Alexei Gurevich for help
with the experiments and to the anonymous referees whose comments
have benefited the paper greatly. This work was supported the Government
of the Russian Federation, grant 11.G34.31.0018. Work of the first author was
also supported by the Russian Fund for Basic Research grant 12-01-00450-a
and the Russian Presidential Grant MK-6628.2012.1. Work of the second
author was additionally supported by the Russian Fund for Basic Research
grant 12-01-00747-a.

Author details
1Algorithmic Biology Laboratory, Academic University, St. Petersburg, Russia.
2St. Petersburg State University, Russia. 3Department of Computer Science
and Engineering, University of South Carolina, Columbia, SC, USA.

Authors’ contributions
All authors contributed extensively to the work presented in this paper.

Declarations
The publication costs for this article were funded by the Government of the
Russian Federation, grant 11.G34.31.0018.
This article has been published as part of BMC Genomics Volume 14
Supplement 1, 2013: Selected articles from the Eleventh Asia Pacific
Bioinformatics Conference (APBC 2013): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S1.

Competing interests
The authors declare that they have no competing interests.

Published: 21 January 2013

References
1. Grindberg R, Ishoey T, Brinza D, Esquenazi E, Coates R, Liu W, Gerwick L,

Dorrestein P, Pevzner P, Lasken R, Gerwick W: Single cell genome
amplification accelerates identification of the apratoxin biosynthetic
pathway from a complex microbial assemblage. PLOS One 2011, 6(4):e18565.

2. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL,
Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O,
Smith GP, Evers DJ, Pevzner PA, Lasken RS: Efficient de novo assembly of
single-cell bacterial genomes from short-read data sets. Nat Biotechnol
2011, 29:915-921.

3. Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken R: Genomic
sequencing of single microbial cells from environmental samples.
Current Opinion in Microbiology 2008, 11(3):198-204.

4. Gill S, Pop M, Deboy R, Eckburg P, Turnbaugh P, Samuel B, Gordon J,
Relman D, Fraser-Liggett C, Nelson K: Metagenomic analysis of the human
distal gut microbiome. Science 2006, 312(5778):1355-1359.

5. Hamady M, Knight R: Microbial community profiling for human
microbiome projects: tools, techniques, and challenges. Genome Res
2009, 19(7):1141-1152.

6. Li J, Vederas J: Drug discovery and natural products: end of an era or an
endless frontier? Science 2009, 325(5937):161-165.

7. Kelley DR, Schatz MC, Salzberg SL: Quake: quality-aware detection and
correction of sequencing errors. Genome Biology 2010, 11(11):R116.

8. Medvedev P, Scott E, Kakaradov B, Pevzner P: Error correction of high-
throughput sequencing datasets with non-uniform coverage.
Bioinformatics 2011, 27(13):i137-41.

9. Chaisson MJ, Pevzner P: Short read fragment assembly of bacterial
genomes. Genome Research 2008, 18:324-330.

10. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A, Lesin V,
Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G,
Alekseyev M, Pevzner P: SPAdes: a new genome assembler and its
applications to single cell sequencing. Journal of Computational Biology
2012, 19(5):455-477.

11. Cock P, Fields C, Goto N, Heuer M, Rice P: The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res 2010, 38(6):1767-1771.

12. Cormen TH, Leiserson CE, Rivest R: Introduction to Algorithms MIT Press;
2009.

13. Schwarz G: Estimating the dimension of a model. Annals of Statistics 1978,
6:461-464.

14. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: Quality Assessment for
Genome Assemblies. 2012, [Submitted].

15. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA: Reducing storage
requirements for biological sequence comparison. Bioinformatics 2004,
20(18):3363-3369.

Table 3 Assembly results, multi-cell E.coli dataset (contigs of length ≥ 200 are used). (Continued)

mismatches per 100
kbp

8.55 8.55 13.76 44.46 44.33 13.76 1.21

indels per 100 kbp 0.99 0.99 1.14 0.76 0.97 1.14 0.20

genes 4254+45 part 4254+45 part 4245+56 part 4196+72 part 4204+68 part 4245+56 part 4174+62 part

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 10 of 11

doi:10.1186/1471-2164-14-S1-S7
Cite this article as: Nikolenko et al.: BayesHammer: Bayesian clustering
for error correction in single-cell sequencing. BMC Genomics 2013 14
(Suppl 1):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Nikolenko et al. BMC Genomics 2013, 14(Suppl 1):S7
http://www.biomedcentral.com/1471-2164/14/S1/S7

Page 11 of 11

